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Abstract

This work introduces robust multi-dialectal part of speech tagging trained on an anno-
tated dataset of Arabic tweets in four major dialect groups: Egyptian, Levantine, Gulf,
and Maghrebi. We implement two different sequence tagging approaches. The first uses
Conditional Random Fields (CRF), while the second combines word and character-based
representations in a Deep Neural Network with stacked layers of convolutional and re-
current networks with a CRF output layer. We successfully exploit a variety of features
that help generalize our models, such as Brown clusters and stem templates. Also, we
develop robust joint models that tag multi-dialectal tweets and outperform uni-dialectal
taggers. We achieve a combined accuracy of 92.4% across all dialects, with per dialect
results ranging between 90.2% and 95.4%. We obtained the results using a train/dev/test
split of 70/10/20 for a dataset of 350 tweets per dialect.

1 Introduction

Part of Speech (POS) tagging is the task of automatically assigning syntactic cat-

egory labels to tokens in text and is an important preprocessing step for higher

order NLP tasks such as syntactic parsing (Jurafsky and Martin, 2009). Most Ara-

bic POS tagging work has focused on Modern Standard Arabic (MSA), which is

used in formal communication, while work on POS tagging of Dialectal Arabic

(DA), which is ubiquitous on social media and informal communication, has lagged

behind. DA’s informality leads to the prevalence of spelling variations (often cre-

ative), transliterated foreign words, and the use of social media artifacts such as

emoticons and hashtags. Since Arabic speakers typically use dialects in their daily

interactions, dialects became their natural choice in online conversations, replacing

or complementing MSA. Arabic dialects are broadly classified into five major di-

alect groups, namely Egyptian, Levantine, Maghrebi, Iraqi, and Gulf. Each dialect

group comprises a number of sub-dialects. For instance the Maghrebi group cov-

ers Libyan, Moroccan, Tunisian, Algerian, and Mauritanian, creating a continuum

rather than discrete dichotomous variations. Dialects often differ much in lexical
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choices and may exhibit syntactic and morphological differences. The larger and

the more diverse the lexical, morphological, phonetic, and syntactic differences be-

tween dialects, the less mutually intelligible they become. Prior POS tagging work

on such informal and dialectal social media text has been scant due in large part to

the scarcity of annotated data. Available work is mostly uni-dialectal with Egyp-

tian receiving the most attention (Duh and Kirchhoff, 2005; Habash et al., 2013;

Khalifa et al., 2017).

This work introduces robust multi-dialectal POS tagging trained on a annotated

dataset of Arabic tweets in four major Arabic dialects: Egyptian (EGY), Levantine

(LEV), Gulf (GLF), and Maghrebi (MGR) (Darwish et al., 2018). We employ two

different approaches. The first uses Conditional Random Fields (CRF), while the

second combines word and character-based representations in a Deep Neural Net-

work (DNN) architecture. We also exploit millions of unlabeled tweets to obtain

word clusters and clitic-level embeddings, and we employ a variety of linguistic fea-

tures, such as clitic metatypes and stem templates. We develop robust joint models

that tag multi-dialectal tweets and outperform uni-dialectal models. We achieve an

average word-level accuracy of 92.4% across all dialects. The success of the joint

models hinges on effective automatic dialect identification that we develop using

a DNN model, which is at par or better than the current state-of-the-art, distin-

guishing between 5 dialects with 86.3% accuracy at tweet level. The contributions

of the paper are as follows:

• We compare the use of linear CRF sequence labeling and DNN with a variety

of features to leverage limited training data.

• We build joint POS tagging models that can effectively tag tweets in multiple

dialects. In the process, we develop effective dialect identification that we

embed within our models. We plan to publicly release our source-code and

models.

• We show that state-of-the-art results can be achieved for POS tagging using

a small annotated dataset.

2 Background

Some recent papers have focused on POS tagging of English social media text,

particularly tweets. Gimpel et al. (2011) used a CRF based sequence labeler in

conjunction with a variety of features, such as word distributional similarity and

phonetically normalized forms. In follow-on work, they improved their POS tag-

ging accuracy from 89.3% to 92.2% by making use of Brown clusters (Brown et al.,

1992), which are hierarchical clusters of words based on the contexts in which they

appear. The usefulness of Brown clusters for POS tagging was also demonstrated

in (Owoputi et al., 2013; Stratos and Collins, 2015). Similarly we show the effective-

ness of using Brown clusters in the context of our CRF and DNN models. Derczynski

et al., (2013) attempted to improve POS tagging of tweets by specifically targeting

low frequency words, which are often misspellings or creatively spelled words.

Work on POS tagging of Arabic social media text is scant. The scarcity of
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dialectal resources has hampered research on Dialectal Arabic (DA). Few resources

were made available by programs such as TIDES, GALE and BOLT and dis-

tributed by LDC, which are not widely accessible due to their license requirements.

As such, researchers used ad-hoc resources or small datasets that were curated

locally and not widely accessible. Graja et al. (2010) created the Tunisian Dialect

Corpus Interlocutor (TuDiCoI) with 893 utterances and 3,404 words from dialectal

conversations between Tunisian railway staff. Bouamor et al., (2014) used a

collection of 2,000 sentences in Egyptian dialect as a seed to build a multi-dialectal

Arabic corpus. The seed sentences were translated by native speakers into their

own dialects to create a parallel multi-dialectal corpus in addition to English.

Cotterell and Callison-Burch (2014) extended the work of Al-Sabbagh and Girju

(2010), Zaidan and Callison-Burch (2011) to build a collection of commentaries

from five Arabic newspapers and tweets that was used for automatic dialect

identification. Duh and Kirchhoff (2005) used CallHome Egyptian Colloquial

Arabic to build a POS tagger for Egyptian and achieved an accuracy of 69.83%.

Habash et al. (2013) released a new adaptation for MADA (Roth et al., 2008),

that can also process dialectal Egyptian. Darwish et al. (2018) recently released a

dataset of POS tagged tweets that cover four different Arabic dialect groups. We

use this dataset in this paper, and we describe it in greater detail in the next section.

3 Data Description

We used the POS tagged dialectal Arabic dataset that was released by Darwish

et al. (2018). The dataset includes 350 tweets for four major Arabic dialects that

were manually segmented and POS tagged as is without applying any spelling

standardization (Darwish et al., 2018), such as CODA (Habash et al., 2012). For

example the word mtbSlw$1 “do not look at him” is segmented as m+tbS+l+w+$

and tagged as: PART+V+PREP+PRON+NEG PART. The data is split into 5-fold

partitions for cross-validation with 70/10/20 train/dev/test splits for each dialect.

For comparison, we manually segmented and POS tagged an additional 350 MSA

tweets, which differ in dialect but match in genre. To find MSA tweets, we used 30

very strong MSA words to filter millions of Arabic tweets. These words are mainly

function words such as relative pronouns Al*yn and Al*y (who), demonstrative

pronouns h*A and tlk (this, that), question words mA*A and lmA*A (what, why),

and adverbs bynmA and TAlmA (while, so long as). We randomly selected 100

tweets containing each word. Then from those, we randomly selected 350 tweets as

a sample of MSA tweets. The dataset size is as follows:

1 Buckwalter transliteration is used in the paper
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Dialect Tweets Words Clitics

MSA 350 8,082 12,496

Egyptian (EGY) 350 7,481 11,602

Levantine (LEV) 350 7,221 11,015

Gulf (GLF) 350 6,767 10,181

Maghrebi (MGR) 350 6,400 9,408

The dataset is tagged using the Farasa POS tagset (Darwish et al., 2017), which

has 18 tags for MSA, 2 dialect-specific tags (PROG PART, and NEG PART), and

4 tweet-specific tags (HASH, EMOT, MENTION, and URL) (Darwish et al., 2018).

Table 1 shows examples of the dialectal and tweet-specific tags.

POS Description Example

NEG PART Negation Part. �
�A

	
JÊ

�
¯AÓ (mAqlnA$ – “we did not say”)

PROG PART Progressive Part. ú


ÍA�

�
�» (ktsAly – “he is finishing’)

EMOT Emoticon/Emoji ˆ ˆ
HASH Hashtag #Lebanon
MENTION Mention @ANimer
URL URL http://t.co/gbtT3

Table 1. Dialect and tweet-specific POS tags

Words are white-space and punctuation separated while hashtags, emotions, men-

tions and URL’s are considered as single units without internal segmentation. Data

is formatted in CoNLL format: Words are split into tokens or clitics, which are

syntactic units (such as prepositions, conjunctions, determiners, pronouns and par-

ticles) that happen to attached to words. For example, the word I. k


@ð w¿Hb “and

I like” is split into two tokens where the conjunction ð “and” is separated from the

word. POS is provided in the data at the token level. In our annotation scheme,

tokens, words, and sentences are separated by token boundary tag (TB), word

boundary tag (WB), and end of sentence tag (EOS) respectively as shown in Table

2.

Figure 1 shows that dialects display more lexical diversity than MSA, with more

clitics having more than one possible tag. Joining dialects increases ambiguity with

48% of tokens having more than one POS tag.

4 Learning: Methods and Features

4.1 Learning Methods

We used two learning methods with different paradigms, namely: CRFs and DNNs.

Linear Chain CRF: The effectiveness of CRFs (Lafferty et al., 2001) was shown
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Index Token POS

0 ð (w) “’and’ CONJ

0 TB TB

0 I. k


@ (¿Hb) “I like” V

0 WB WB

1 ©ÖÞ�


@ (¿smE) “I listen” V

1 WB WB
.. .. ..
n EOS EOS

Table 2. Data format for segmentation and POS tagging

Fig. 1. Ambiguity in POS tags: % of clitics with 1 or more tags per dialects and in

combination.

by Darwish et al., (2018) in POS tagging on this dataset. We replicated their setup,

which uses CRF++ implementation of a CRF sequence labeler with L2 regulariza-

tion and default value of 10 for the generalization parameter “C”.2 CRFs combine

state-level and transition features and are simple, well-understood, and usually pro-

vide efficient models with close to state-of-the-art results.

Deep Neural Network: We used the DNN model depicted in Figure 2, which

is well suited for sequence tagging. It is a variant of the bi-LSTM-CRF architec-

ture proposed by Reimers and Gurevych (2017); Ma and Hovy (2016); Lample et al.

(2016); Huang et al. (2015).3 It combines a double representation of the input words

by using word embeddings and a character-based representation (with CNNs). The

input sequence is processed with bi-LSTMs, and the output layer is a linear chain

CRF. The model uses:

Clitic-level embeddings allow the learning algorithms to use large unlabeled data

to generalize beyond the seen training data. We explore randomly initialized em-

2 https://github.com/taku910/crfpp
3 Our implementation is mostly inspired by the work of Reimers and Gurevych (2017).
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beddings based on the seen training data and pre-trained embedding.

Character-level CNNs have proved effective for various NLP tasks due to their

ability to extract sub-word information (ex. prefixes or suffixes) and to encode

character-level representations of words (Collobert et al., 2011; Chiu and Nichols,

2016; dos Santos and Guimarães, 2015).

Bi-LSTM Recurrent neural networks (RNN) are well suited for modeling se-

quential data, achieving ground-breaking results in many NLP tasks (e.g., machine

translation). Bi-LSTMs (Hochreiter and Schmidhuber, 1997; Schuster and Paliwal,

1997) are capable of learning long-term dependencies and maintaining contextual

features from both past and future states while avoiding the vanishing/exploding

gradients problem. They consist of two separate bidirectional hidden layers that

feed forward to the same output layer.

CRF is used jointly with bi-LSTMs to avoid the output label independence as-

sumptions of bi-LSTMs and to impose sequence labeling constraints as in Lample

et al. (2016).

The architecture of our model, shown in Figure 2, is applied to the example word

“mA+dxl+tw+$” (you did not enter) to predict its POS tags. For each clitic, the

CNN computes the character-level representation with character embeddings as

inputs. Then the character-level representation vector is concatenated with both

clitic embeddings vector and feature embedding vectors to feed into the bi-LSTM

layer. Finally, an affine transformation followed by a CRF is applied over the hidden

representation of the bi-LSTM to obtain the probability distribution over all the

POS labels. Training is performed using stochastic gradient descent with momen-

tum of 0.9 and batch size equal to 5. Given the relatively small POS datasets, we

employ dropout (Hinton et al., 2012) and early-stopping (Caruana et al., 2000) to

mitigate overfitting. We tuned our hyper-parameters on the development dataset

using random search. We used the following hyper-parameters:
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Layer Hyper-Parameters Value

Characters CNN
window size 3

number of filters 40

Bi-LSTM
state size 200

initial state 0.0

Dropout dropout rate 0.5

Characters Emb. dimension 100

Clitics Emb. dimension 300

batch size 5

learning rate 0.01

decay rate 0.05

4.2 Features

For both learning methods, we experimented with three features: two features that

were shown to be effective for dialectal POS tagging by Darwish et al. (2018),

namely token metatypes and stem templates; and the third is Brown clusters.

Metatypes (MT) include 10 types of tokens that are heuristically determined,

namely: #Hashtag; @Mention; URL; Emoticon/emoji (dictionary-based); Retweet

(“RT”); Foreign (all Latin characters); Number (numerals or spelled out numbers);

Punctuation; Arabic (all Arabic letters); and Other.

Stem templates (ST) are morphological patterns that are used to derive stems

from roots, such as the stem “lAEb” (player) which is derived from the root “lEb”

using the stem template “CACC”. We used Farasa (Abdelali et al., 2016) to deter-

mine stem templates.

Brown clusters (BC) Brown clustering is a hierarchical clustering of words based

on their context (Brown et al., 1992) and produces a kind of word embeddings.

Similar words, particularly those with the same POS tag, tend to appear in similar

contexts. BCs can be learned from large unlabeled texts and have been shown to

improve POS tagging, specially for small training sets (Owoputi et al., 2013; Stratos

and Collins, 2015). To obtain BCs, we first collected a set of 5 million tweets for

each dialect by filtering tweets based on Twitter users’ stated locations. For in-

stance, to obtain Maghrebi tweets, we collected those that matched geographical

locations such as Morocco, Casablanca, Algeria, Tunisia using their Arabic, En-

glish, and French names. Similarly, we filtered tweets that match locations in which

the other dialects are spoken. Though geographical filtration does not guarantee

a specific dialect, we assumed that a substantial part of tweets would be in the
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Fig. 2. DNN architecture applied on the word mdxltw$ “you did not enter”.

desired dialect. For MSA, we filtered tweets using the aforementioned strong MSA

words (pronouns and particles). We segmented MSA tweets using Farasa (Abdelali

et al., 2016) and the dialectal tweets using the DNN segmenter of Samih et al.

(2017). We obtained BC’s using the implementation of Liang (2005). To illustrate

the effectiveness of BCs, the top tokens in the cluster that includes the emoticon

“;)” include “:d”, “xd”, and “:-d”. We used this dataset to pre-train embeddings.

5 Experiments and Results

5.1 CRF

We conducted two different sets of experiments. In the first set, we trained uni-

dialectal models that are trained and tested on the same dialect. For our base-

line (BL) model, given a sequence of clitics cn...c−2, c−1, c0, c1, c2...cm, where we

assumed perfect segmentation, we used a combination of clitic unigram features

{c−1;c0;c1} and bigram features {c−1−2;c0−1;c10;c21;} (Darwish et al., 2018). We also

experimented with stem templates (ST), clitic metatypes (MT), and Brown clus-

ters (BC). For BCs, we varied the number of clusters to be 50, 100, 200, or 400, and

we used cluster paths as features. We conducted side experiments where we used
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Unseen Seen

+ST

+MT

+BC +ST

+MT

+BC

+ST

+MT

+BC +ST

+MT

+BC

MSA 83.5 89.4 91.5 94.2 95.8 96.4

EGY 79.7 84.7 88.6 94.9 96.2 96.3

LEV 74.5 79.4 79.4 90.8 91.8 92.1

GLF 71.7 82.5 83.1 91.2 93.3 93.7

MGR 74.7 80.9 82.9 91.3 91.8 92.4

AVG 76.8 83.4 85.1 92.5 93.8 94.2

Table 3. Effect of ST+MT compared to BC200

different prefix lengths of cluster paths, but we did not observe any improvements.

Table 4 shows the effect of using each of the different features individually or col-

lectively. All the results reported in the paper are at word-level (not clitic-level).

Since words are composed of one or more clitics, per clitic results are almost al-

ways higher than word-level results. To illustrate the difference, consider the ut-

terance: m+Akl+t+$ Al+>kl (I did not eat the food) where the correct POS tags

would be: PART+V+PRON+NEG DET+NOUN. If the system erroneously gen-

erated PART+V+PRON+NEG DET+V, accuracy at word level would be 50%

(first word-level composite tag is correct, while the second is not) while clitic-level

accuracy would be 83.3% (5 out of 6).

As the results show, stem templates, metatypes, and Brown clusters improve

upon the baseline model. Combining all features improves POS tagging accuracy

with ST+MT+BC200 providing the best results (92.0 versus a baseline of 85.4).

Though we tried to faithfully reproduce the results of Darwish et al. (2018), which

constitute our baseline, our results were consistently higher by roughly 2%.

We also compared the effect of ST+MT together with BCs to using BCs alone

on clitics that were seen or unseen during training. As Table 3 shows, BCs were far

more effective than the combination of MT and ST in generalizing to unseen clitics.

Using all features, yielded the best overall results. The effect was less pronounced

for seen clitics.

In the second set, we trained joint models using the training data for all dialects

and we tested on individual dialects. We wanted to determine if dialectal POS

tagging for one dialect can benefit from the data of another dialect. We used all

the aforementioned features and we varied the number of BCs. Table 5 (a) reports

the results of joint training. As shown, joint training yields lower results than uni-

dialectal models.

Dialect ID The lower results of the joint model prompted us to experiment

with dialect ID as a feature. The rationale for this is that uni-dialectal models

fundamentally assume that dialect IDs are known. We obtained dialect IDs using

two methods. First, we used the gold dialect IDs. Second, we trained an automatic

dialect classifier using the training and dev parts of each of the folds and we tested
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+BCn +ST+MT+BCn
BL +ST +MT n=50 100 200 400 n=50 100 200 400

MSA 85.4 88.3 88.7 91.2 92.0 92.4 92.7 93.9 94.2 94.7 94.3

EGY 90.9 92.4 92.0 92.4 93.1 93.9 93.7 94.1 94.3 94.7 94.7

LEV 84.3 86.3 87.3 86.3 86.7 87.2 88.0 89.3 89.4 89.4 89.4

GLF 83.9 86.6 85.3 87.8 88.6 89.7 91.0 90.6 90.7 91.3 89.6

MGR 82.6 84.6 86.8 85.9 86.6 87.3 88.4 88.9 89.1 89.7 89.4

Average 85.4 87.6 88.0 88.7 89.4 90.1 90.8 91.4 91.6 92.0 91.5

Table 4. Training and testing on the same dialect with different features with n

brown clusters.

no dialect ID (a) Automatic dialect ID (b) Gold dialect ID (c)

# of BCs 50 100 200 400 50 100 200 400 50 100 200 400

MSA 93.3 93.3 93.6 93.2 94.2 94.2 94.5 94.4 94.5 94.4 94.8 94.6

EGY 94.0 94.5 94.7 94.4 94.9 95.4 95.4 95.2 95.2 95.7 95.8 95.5

LEV 89.6 89.3 89.8 89.4 90.1 90.2 90.6 90.4 90.7 90.8 90.7 91.0

GLF 89.5 89.8 90.3 89.8 90.6 91.1 91.3 91.4 91.3 91.8 92.2 92.1

MGR 88.3 88.6 88.7 88.7 89.9 90.2 90.2 90.5 90.2 90.5 90.7 90.8

Average 90.9 91.1 91.4 91.1 92.0 92.2 92.4 92.4 92.4 92.6 92.8 92.8

Table 5. Joint training on all dialects and testing on individual dialects with all

features and dialect ID.

on the test part of the fold. We trained the fastText DNN classifier (Bojanowski

et al., 2016) using character 2, 3, 4, and 5 grams as inputs, a 40 dimensional em-

bedding vector for each input, a learning rate of 0.1, and 50 training epochs. The

resultant classifier achieved an average accuracy of 86.3% across all folds. Arabic

dialect detection is non-trivial due to high lexical overlap between dialects. Our di-

alect identifier is competitive with state-of-the-art classifiers, where reported results

for MSA vs. Egyptian range between 88.5% (Elfardy and Diab, 2013) and 94.4%

(Darwish et al., 2014) with even lower results (74%) for multi-dialect identification

(Malmasi et al., 2015).

We added the dialect ID as three features: dialect ID, combination of dialect ID

and clitic, and combination of dialect ID and Brown clusters. Table 5 reports on

the results of using either gold dialect IDs, which provides the maximum attainable

gain from using dialect IDs, and automatic dialect ID. As can be seen, using dialect

ID, either gold or automatic, as a feature yielded results that surpassed all our

previous results. Using gold dialect IDs gave 0.4% higher than using the automatic

dialect IDs. As seen before, using either 200 or 400 Brown clusters yielded the best

overall results.

Significance Test We ran a paired two-tailed t-test and a Wilcoxon signed-

rank test to ascertain if differences between results are statistically significant or

not. While the t-test is a parametric test, the Wilcoxon test is not. When comparing

two setups, we compared the results they produce for every fold for every dialect (25
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different values) in a paired manner. We ran n x n comparisons between: baseline;

baseline with each individual feature (ST, MT, BC); baseline with all features; and

joint system with all features with no dialect ID, automatic dialect ID, and gold

dialect ID. When BCs were used, we looked at systems using 200 BCs.

Aside from the comparison between the baseline with +ST and the baseline +MT

where the p-values were 0.745 and 0.711 for the t-test and Wilcoxon test respec-

tively, all other differences were statistically significant with p-values ≤ 0.01 for

both tests. This shows that the BCs feature yields better results than either of the

two other features. Combining features leads to statistically significant improve-

ments. Joint training without dialect IDs degrades results significantly, while joint

training with automatic or gold dialect IDs improves results significantly. Lastly,

improving automatic dialect identification is likely to lead to statistically significant

improvements.

5.2 DNN

We conducted two sets of experiments using DNN. First, we trained uni-dialectal

models. We conducted four experiments with different layers stacked on top of each

other, making use of linguistic features, word embeddings, and unsupervised clus-

tering. The experiments were as follows:

Baseline (BL) were we used clitics only with randomly-initialized embeddings. In

this setup we use bi-LSTM with Chain CRF classifier.

Baseline+Chars we added randomly-initialized embeddings and character repre-

sentations. We add a one-dimensional CNN layer for characters. These two layers

and the subsequent layers are merged (concatenated) together before being passed

on to the Bi-LSTM and the CRF classifier.

BL+Chars+Embed we used pre-trained embeddings for clitics and characters,

which were trained on the aforementioned tweets corpus.

BL+Chars+Embed+Features we used clitics and characters with pre-trained

embeddings and all features (ST+MT+BC200).

The results in Table 6 show that the DNN model receives significant boosts

from adding: a) a CNN characters layer (79.3% to 87.3%); b) a pre-trained embed-

dings layer (87.3% to 90.7%); and c) the features (90.5% to 91.7%). We conducted

side experiments to ascertain the relative effectiveness of the different features. We

found that the model achieves the most gain from the Brown clusters (+0.9%) and

does not get any significant gain from either metatypes (-0.2%) or stem templates

(+0.1%). We assume that the reason for that is that character-specific features are

already encoded in the CNN characters layer. One interesting observation is that

though pre-trained embedding and Brown clusters are similar in the sense that both

try to learn from unlabeled data, their combination is better than either of them

alone.

In the second set of experiments, we trained joint models and tested on indi-

vidual dialects. We used the best uni-dialectal configuration, which uses clitic and

character inputs with pre-trained embeddings that represents all the dialects and

all features. The results in Table 7 (a) show that the model does not benefit from
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BL +Chars +Chars

+Embed

+Chars

+Embed

+ST+MT

+BC200

MSA 82.8 90.6 92.8 94.3

EGY 84.6 90.2 94.2 94.9

LEV 76.6 84.2 88.2 89.8

GLF 76.6 85.8 89.7 90.9

MGR 75.8 85.5 88.4 88.7

Average 79.3 87.3 90.7 91.7

Table 6. DNN: Training and testing on the same dialect with different features

(a) (b)

Dialect ID None Gold

MSA 94.7 94.0

EGY 94.3 94.7

LEV 89.8 90.1

GLF 89.9 90.4

MGR 88.2 88.4

Average 91.4 91.5

Table 7. Joint DNN training w/ & w/o dialect IDs (Features:

Chars+Embed+ST+MT+BC200)

joint training with results dropping by 0.3%. This is consistent with results that

we observed for CRFs (Table 5 (a)). Thus, we also experimented with providing

the dialect ID as a feature to our DNN. Table 7 (b) shows the results of using gold

dialect IDs. The DNN model does not benefit significantly from dialect IDs and the

results of the joint model (with and without dialect ID) is comparable to the best

uni-dialectal model.

For significance testing, again we used the t-test and the Wilcoxon test

to compare all the setups in Tables 6 and 7. The best uni-dialectal setup

(Chars+Embed+ST+MT+BC200) and the joint training setups with and with-

out dialect ID were all statistically indistinguishable with p-values ≥ 0.05 using

both tests. All other differences were statistically significant with p-values ≤ 0.01

for both tests. This indicates that: a) adding a character-level CNN and pre-trained

embeddings yielded statistically significant improvements; b) adding features led to

significant improvement; c) the drop of the joint model, with and without dialect

IDs, compared to the best uni-dialectal model was not statistically significant; and

d) adding the dialect ID did not lead to significant improvement.
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No. of possible Dialect ID

tags per clitic None Auto.

1 98.4 98.4

2 86.4 89.0

3 92.2 94.4

4 91.4 92.0

Table 8. Effect of dialect ID on improving tagging of clitics with different number

of possible tags

5.3 Discussion

We compared the results of using the CRF and DNN setups. We specifically

compared:

• CRF baseline (85.4% – Table 4) and DNN with character representations and

pre-trained embeddings (90.7% – Table 6). Both uni-dialectal models involve

no feature engineering. Results show that the DNN setup outperforms

the CRF baseline, as the DNN is able to learn features automatically.

The difference is statistically significant with p-values ≤ 0.01 for both the

significance tests.

• CRF using all features (+ST+MT+BC200) (92.0% – Table 4) and DNN

using all features (+Chars+Embed+ST+MT+BC200) (91.7% – Table 6).

Though the CRF results are slightly higher (+0.3%), the difference is not

significant with p-values ≥ 0.05 using both significance tests.

• joint learning with automatic dialect ID with CRF (92.4% – Table 5 (b))

and DNN (91.5% – Table 7 (b)). CRF yields statistically significantly better

results than DNN for joint training with +0.9% improvement (absolute).

• We were hoping that by merely performing joint training, the results would

improve overall. That was not the case. As seen in Figure 1, joining the

tweets from different dialects increases ambiguity with 48% of clitics having

at least 2 different possible POS tags compared to 30-36% for individual

dialects. However, as Table 8 shows, adding dialect ID for the CRF setup

improved tagging for clitics with multiple possible POS tags.

• Lastly, we looked at the effectiveness of our best CRF and DNN systems

in handling words that were unseen during training. The CRF system was

correct 85.4% of the time compared 86.0% for the DNN system. The difference

is rather small with no clear advantage for either one.

Tables 9 and 10 show the most common word- and clitic-level errors for both
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CRF and DNN approaches with joint training and how often they appear. The

error distributions of both approaches seem to closely match, with verbs-noun and

noun-adjective confusion being the most common. As the examples in Tables 9 and

10 show, many errors stem from: a) dialectal or foreign words (marked with φ in ta-

bles); b) ambiguous words that can assume either POS tag given different contexts

(marked with ξ); c) letter substitutions between different forms of alef, ta marbouta

and ha, and alef maqsoura and ya (marked with ψ); and d) non-conventional dialec-

tal spellings (marked with λ). Other errors include named entities and misspelled

words.

Error Type CRF DNN Examples

ADJ+NSUFF 9% 9%
�
é+J
�

	
m�

�
� ($xSy+p)

↔NOUN+NSUFF “personality/personal” ξ

V+PRON 9 9 ú



�
F+J
ºk (Hky+ty)

↔NOUN+PRON “my story/you said” ξ,λ

NOUN+NSUFF 7 9 é+J
�.� (Sby+h)

↔NOUN+PRON “girl/his son” ξ,ψ

DET+ADJ 7 7 ú


æ�AJ
�+Ë@ (Al+syAsy)

↔DET+NOUN “the politic(al—ian)” ξ

DET+ADJ+NSUFF 6 6 	áJ
+K
Qå�Ò+Ë@ (Al+mSry+yn)

↔DET+NOUN+NSUFF “the Egyptians” ξ

Table 9. Most common word-level errors

Error Type CRF DNN Examples

V↔NOUN 23% 26% 	
�ñ

	
K (nwD)

“get up” φ

ADJ↔NOUN 21 21 ÉJ
Ô
g
.
(jmyl)

“favor/beautiful” ξ

PART↔NOUN 8 7 ø



Aë (hAy)

“Hi” φ

ADJ↔V 6 5 Yª�


@ (>sEd)

“happiest/brought joy” ξ

ADV↔PART 5 4 ��. (bs)

“only/enough” ξ

Table 10. Most common clitic-level errors
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5.4 Comparison to Existing Tools

We compared our results against two state-of-the-art Arabic POS taggers, namely

Farasa (Darwish et al., 2017) and MADAMIRA (Pasha et al., 2014). Since neither

were tuned for tweets, we edited their outputs to assign tweet-specific tags as not

to penalize them for missing hashtags, mentions, URLs, and emoticons. Farasa is

tuned for MSA only. Its accuracy on MSA tweets was 89.3%, which is much lower

than its results on news (96.2%) (Darwish et al., 2017) and also significantly lower

than the results obtained by our CRF with joint training (94.5%). This suggests

that the tweets genre is rather different from news stories, which behooves the need

for training taggers specifically for tweets. As for MADAMIRA, which is tuned for

MSA and EGY, achieved 88.0% and 90.5% on MSA and EGY tweets, respectively.

Again, these results are much lower than MADAMIRA on news stories (95.3%)

(Darwish et al., 2017) and much lower than our CRF (94.5% and 95.4%). Training

on limited in-domain data can yield better results than a POS tagger that is trained

on lots of out-of-domain data. It is noteworthy that both Farasa and MADAMIRA

could have benefited from gold segmentations. However, altering either system to

supply gold segmentations is beyond the scope of this work.

6 Conclusion

In this paper, we present state-of-the-art POS tagging of multi-dialectal Arabic

tweets using CRF and DNN approaches, and based on a small tagged dataset of

Arabic tweets. The dataset covers MSA and the four major dialect groups. We

explore uni-dialectal and joint models. While uni-dialectal CRF and DNN models

yield statistically indistinguishable results, our CRF model outperforms DNN for

joint training. We show that using a mere 350 tweets per dialect can lead to word-

level accuracy of 92.4% on average across dialects. The CRF model obtains the best

results when using: linguistic features (stem templates and clitic metatypes), word

clusters from a large unlabeled tweet corpus, and automatic dialect identification.

These three elements boost the accuracy from 85.4% to 92.4% (i.e., a relative error

reduction of 48%). For the DNN approach, we combine clitic and character-level

inputs with the features we used for CRF to obtain the best DNN results. Though

both serve similar purposes, combining pre-trained embeddings and word clusters

yields the best results. Linguistic features and dialect identification marginally affect

DNN results.
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